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Abstract 

 
In general, software reliability models have focused 

on modeling and predicting failure occurrence and have 
not given equal priority to modeling the fault correction 
process. However, there is a need for fault correction 
prediction, because there are important applications that 
fault correction modeling and prediction support. These 
are the following: predicting whether reliability goals 
have been achieved, developing stopping rules for testing, 
formulating test strategies, and rationally allocating test 
resources. Because these factors are related, we integrate 
them in our model. Our modeling approach involves 
relating fault correction to failure prediction, with a time 
delay between failure detection and fault correction, 
represented by a random variable whose distribution 
parameters are estimated from observed data.  
 
1. Introduction 
 There is a need for greater emphasis on fault 
correction modeling and prediction in software reliability 
models. This need stems from the fact that the fault 
correction process is vital to ensuring high quality 
software. If we only address failure prediction, reliability 
assessment will be incomplete because it would not 
reflect the reliability of the software resulting from fault 
correction. In addition to achieving greater accuracy in 
reliability prediction, there are by-product benefits 
associated with fault correction prediction as follows: 
 
a. Predicting whether reliability goals have been achieved: 
If no predictions are made of the number of faults to be 
corrected, fault correction rate, and fault correction time, 
accurate prediction of reliability cannot be obtained.   
 
b. Providing stopping rules for testing as follows: (1) The 
predicted number of remaining faults is less than or equal 
to a specified critical value and (2) The fault correction 
rate asymptotically approaches zero. 
 
c. Prioritizing tests and allocating test resources: Software 
with high values of number of remaining faults and low 
fault correction rates are given high priority in testing and 
allocation of resources, such as personnel and computer 
time. 

 

 Our research hypothesis is that fault correction can be 
modeled with a function that has the same form as the 
failure detection function but with a random delay that 
accounts for fault correction time. In practice, it would be 
possible to predict how much delay in the correction 
process could be tolerated in order to meet reliability 
goals at a given time in test or operation.  
 

Gokhale and colleagues have addressed the issue of 
delayed fault correction, when the delay is caused by the 
queuing of faults to be removed or by the presence of 
latent faults that are difficult to remove [2]. However, this 
is not the same as the delay mentioned in section 2.1 
below that is the result of a decision by the developing 
organization to defer fault correction until the removal of 
a fault becomes critical to the operation of the software. 
They also model the possibility of imperfect fault repair 
(i.e., a fault may not be entirely corrected or a new fault 
may be inserted during the repair operation) [1]. They use 
a non-homogeneous Markov Chain to represent a non-
homogeneous Poisson process to model failure detection 
and fault correction. Their approach is interesting and 
provides greater flexibility than analytical models like 
ours in a variety of fault correction scenarios. However, 
analytical models provide greater visibility of the 
relationships between factors that influence the fault 
correction process than do complex Markov Chain 
diagrams. In addition, their models have not been 
validated against real-world projects. In contrast, we have 
provided validation tests in Tables 1, 2, and 3 for the 
Shuttle.   

 
The delayed S-shaped model has the interesting 

characteristic of an initial increasing failure intensity 
function, as the test team becomes familiar with the 
software, reaches a maximum, and then asymptotically 
approaches zero with test time, as it becomes more 
difficult to detect failures. Thus, this model gets its name 
from a delay in failure detection and not fault correction, 
because an assumption of the model is that faults are 
corrected immediately without introducing new ones [4]. 
 

This paper contains the following sections: 2. Fault 
Correction Prediction Model Components, 3. 
Applications, 4. Validation, and 5. Summary and 
Conclusions 

  



2. Fault Correction Prediction Model 
Components 
 This section develops the equations of the 
components of the fault correction prediction model, 
where all references to “time” are elapsed or wall clock 
times. These components include the following: failure 
and fault correction counts, measures of progress in fault 
correction, and stopping rules for testing to achieve 
specified reliability goals.  
  
2.1 Fault Correction Delay 

Our approach to fault correction prediction is to relate 
it to failure prediction, introducing a delay dT, between 
failure detection and the completion of fault correction 
(i.e., fault correction time). We  assume that the rate of 
fault correction is proportional to the rate of failure 
detection [6]. In other words, we assume that fault 
correction keeps up with failure detection, except for the 
delay dT. If this assumption is not met in practice, the 
model will underestimate the remaining faults in the code. 
Thus, the model provides a lower bound on remaining 
faults (i.e., the remaining faults would be no less than the 
prediction). Using this assumption, the number of faults 
corrected at time T, C (T), would have the same form as 
the number of failures detected at time T, D (T), but 
delayed by the interval dT. Originally, we used a constant 
dT, which was estimated from the empirical data [6]. As 
pointed out by Xie, this assumption is too restrictive [9]. 
He suggests modeling the delay as an increasing function 
of test time. However, we have not found this to be the 
case in either the Shuttle or Goddard Space Flight Center 
(GSFC) data, where the fault correction time appears to 
be primarily a function of the difficulty of the correction 
and independent of when the correction occurs. In order 
to improve the model, we use a random variable for the 
delay dT. For the Shuttle, this variable was found to be 
exponentially distributed with mean fault correction time 
1/m, where m is the mean fault correction rate in the 
intervals dT. This distribution was confirmed for the 
Shuttle, using a sample of 85 fault correction times and 
the Kolmogorov-Smirnof test, resulting in p = 0. In 
addition, Musa found that failure correction times were 
exponentially distributed for 178 failure corrections [5].  

 
We assume that the fault correction starts when 

failures are detected. This assumption is related to the 
previous assumption of fault correction keeping current 
with failure detection. In some cases, a software 
developer may choose to postpone a non-critical fault 
correction for several releases because it has obtained a 
waiver to not make the correction in the current release. 
We do not attempt to model this human, case-by-case 
decision process in the current model. Our current model 
is based on keeping the software updated with corrections 
in the current release. In addition, the model does not 

include the possibility of introducing a fault when 
correcting one; there is no data available for the Shuttle 
regarding this factor. These are important factors, but they 
are beyond the scope of this effort; these factors will be 
addressed in a future effort, involving the use of GSFC 
data. Fault mitigation methods, such as fault tolerance, 
(the Shuttle has four active computers and a fifth backup) 
are reflected in the model as a reduction in the number of 
failures from what would be experienced with no fault 
tolerance; this result, in turn, decreases the model’s failure 
rate parameters and predicted number of failures. 

 
It is well known that various human queue service 

times (e.g., supermarket checkout stands) can be 
approximated with an exponential distribution [3], and 
can be modeled as a birth-death process, where in our 
case a birth is a detected failure and a death is a corrected 
fault. Musa uses this type of queuing model in his failure 
correction process [5].  

 
Due to the great variability in fault correction time 

that we have found in both the Shuttle and GSFC data, we 
emphasize predicting limits instead of expected values. 
For a given mean fault correction rate m, the cumulative 
probability distribution F (dT) of the fault correction 
delay dT is used to specify upper and lower limits of dT. 
These limits are dTU and dTL, corresponding to FU and FL, 
respectively. The concept is to bound the delay time, for 
example at FU = .9 and FL = .1, and to use these limits in 
the fault correction predictions. Thus, when making 
predictions, there would be high confidence that actual 
values lie within the limits (e.g., probability of .80). The 
equation for F (dT) for the exponential distribution, is 
given by (1): 
F (dT) = 1– exp (- (m) (dT)).     (1). 
 
Equation (1) is manipulated to produce equation (2), 
which would be used to compute the limits of dT, 
applying the specified limit values of F (dT): 
dT = (-log (1 – F (dT)))/m.      (2). 
  

In the examples in section 3, predictions that require 
F (dT) are made using FU and not FL in order to provide 
conservative estimates (e.g., the probability is .90 that the 
number of corrected faults is less than or equal to its 
predicted value or .10 that it exceeds this value). The 
reason for this approach is to mitigate against overly 
optimistic predictions of number and rate of fault 
correction. 
 
2.2 Number of Faults Corrected 
 The predicted number of failures detected D (T), for 
T > (s –1), is given by equation (3) [8]: 
D (T) = (α/β)[1 – exp (-β ((T-s+1)))] + Xs-1,  (3) 
 



where  the terms have the following definitions: 
α :   failure rate at the beginning of  interval s 
β :   negative of derivative of failure rate divided 
by failure rate (i.e.,  relative rate of change of failure rate) 
T:   cumulative test or operational time 
s :   starting interval for using observed failure 
data in parameter estimation 
Xs-1:   observed failure count in the range [1,s-1].  
 
The parameters α and β are obtained from maximum 
likelihood estimation techniques [8]. The parameter s is 
used in the optimal selection of failure data that involves 
selecting only the most relevant set of failure data for 
reliability prediction, with the result of producing more 
accurate predictions than would be the case if the entire 
set of data were used. The mean squared error criterion, 
applied to the differences between predicted and actual 
values in the observed range of the failure data, is used for 
selecting the optimal value of s. For all equations in which 
the term T – s + 1 appears, predictions are made for T > (s 
–1) [7, 8]. 
 
 Using the assumption of section 2.1 that the number 
of corrected faults C (T) has the same form as the number 
of detected failures D (T) but with a variable delay dT, 
yields equation (4), for T > (s –1),  [6]: 
C (T) = (α/β) [1- exp (-β ((T-s+1) - dT))] + Cs-1, (4) 
 
where Cs-1 is the observed fault correction count in the 
range [1,s-1]. Using equation (2), equation (4) becomes 
equation (5), where we would compute the upper and 
lower limits of C (T): 
C (T) = (α/β) [1- exp (-β (T-s+1+ (log (1 - F (dT)))/m))] + Cs-1 
           (5). 
2.3 Proportion of Faults Corrected 

A measure of progress in fault correction of detected 
failures, at time T, is given by the proportion of faults 
corrected, as expressed in equation (6): 
r (T)  = C (T)/D (T)       (6). 
 
The ideal goal, of course, is to achieve a value of 1. 
However, the achievement of this goal is constrained by 
the amount of test time that is economically feasible to 
allocate to the software under test. This challenge will be 
addressed in section 3, when we consider stopping rules 
and prioritization of tests.   
 
2.4 Number of Remaining Faults 
 The predicted number of remaining faults, after the 
correction process has been operative for time T, is given 
by equation (7): 
N (T) = D (T) – C (T)       (7). 
 
This equation is based on the assumption that all the faults 
that exist in the software have been predicted by D (T). A 

more conservative prediction is obtained by predicting the 
detected failures over the life of the software D (TL), as in 
equation (8) [8], and then using equation (9) as the 
predicted remaining faults. 
D (TL) = �/� + Xs-1       (8). 
N (TL) = D (TL) – C (T)      (9). 
 
2.5 Time Required To Correct C Faults 
 In order to do informed scheduling of test resources, 
such as personnel and computer time, it is helpful to 
predict how much cumulative test time would be required 
to correct a given number of faults during testing. If 
equation (4) is solved for T, and C (T) becomes a given 
number of faults C to correct, we obtain equation (10), the 
predicted time required to correct C faults during testing. 
If the delay is exponentially distributed, equation (2) 

2.6 Fault Correction Rate 

would be substituted for dT in equation (10). 
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 The fault correction rate is
p ress in fault correction. If the rate is decreasing and 
relatively high, it would be indicative of further gains in 
fault correction by continuing to test. On the other hand, if 
the rate is decreasing towards an asymptotic value, it 
would indicate that further testing would produce little 
gain in fault correction. The fault correction rate is 
obtained by taking the derivative of equation (5) to 
produce equation (11):  
R (T) = α[exp (-β (T-s+1+ (
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For the purp
dation, post release failure data from three Shuttle 

operational increments were used: OID, OIJ, and OIO. An 
operational increment is a software system comprised of 
modules and configured from a series of builds to meet 
Shuttle mission functional requirements. In addition, fault 
correction data, obtained from Shuttle build inspection 
files, were used.  This section presents several 
applications of the model developed in section 2, 
involving reliability assessment and strategies for efficient 
testing. Because of the space restriction, we are unable to 
show the plots referred to in this section. 
 
3
Been Achieved  
 Because it is 
pr ess to the remaining faults, we specify inequality 
(12), which relates N (T), the number of remaining faults 
at time T, to RC, the critical value of remaining faults: 
N (T) � RC, or N (T) = (D (T) – C (T)) � RC  (12). 
 



When equations (3) and (4) are substituted for D (T) and 
C (T), respectively, in inequality (12), and assuming that 
Xs-1 - Cs-1 � 0 because both Xs-1 and Cs-1 are small in the 
range 1,s-1, we obtain inequality (13), the condition for 
maximum fault correction delay: 
dT � [log[1 + (�/�)(exp (�(T – s + 1)))(RC)]]/� (13). 
 
The parameter RC serves as a reliability threshold. A value 
of RC = 1 would be appropriate for safety critical systems. 
If RC = 0,  dT = 0. This result makes sense because to 
achieve zero faults, faults must be corrected as soon as 
failures are detected. We feel that inequality (13) is a 
significant result, because it says that independent of the 
distribution of dT, (13) must be satisfied to meet the 
reliability requirement. Thus for a given value of RC, we 
are able to specify the maximum fault correction delay dT 
that will meet the reliability goal. As a practical matter, 
the software engineer can control the development and 
maintenance process to constrain the fault correction 
delay to (13) by assigning test personnel with the 
appropriate skills and by allocating sufficient computer 
resources to the tests. 
  
3.2 Stopping Rules for Testing and Prioritizing 
Tests and Test Resources 
 
3.2.1 Remaining Faults and Fault Correction Rate. 
The number of remaining faults N (T), equation (7), can 
be used as a stopping rule for testing. We used an upper 
probability limit of .90, meaning that the probability is .90 
that N (T) is less than or equal to its ordinate values for a 
given test time, or .10 that these values are exceeded. A 
plot of multiple OIs would show how to prioritize tests 
(i.e., the OI requiring the most test time for a given Rc 
would have the highest priority). By priority, we mean the 
order of testing and allocation of personnel and computer 
resources In addition, the plot would show when to stop 
testing (i.e., when the remaining faults equals Rc). Plotting 
the fault correction rate R (T), equation (11), would also 
provide insight for when to stop testing and for 
prioritizing tests. However, we consider N (T) more 
useful because it can be used with the critical value of 
remaining faults Rc -- a reliability threshold.   
 
3.2.2 Reliability Improvement. In the previous section, 
we used absolute quantities (e.g., number of remaining 
faults) for developing test strategies and assessing 
reliability. In this section, we use the relative quantity p 
(T), the proportion of faults remaining at time T, which is 
related to r (T) from equation (6), the proportion of faults 
corrected at time T, by equation (14):  
p (T) = 1 – r (T) = 1 - C (T)/D (T)    (14). 
  
We use (14) because two software systems could have 
experienced different numbers of failures but have equal 

numbers of remaining faults. In this case, the software 
with fewer failures would have achieved greater progress 
in reliability improvement, as measured by p (T). 
However, the use of a threshold seems more intuitive 
when applied to N (T). In practice, both measures could 
be used.    
 
3.2.3 Test Scheduling. We can anticipate test 
requirements and do proactive test scheduling by using 
equation (10), the predicted amount of test time required 
to correct a given number of faults Tc. In addition, a plot 
of multiple software systems would show how the 
systems compare in test requirements.  
 
4. Validation 

Predictions were made for post release failures and 
fault correction, where OID, OIJ, and OIO experienced 
13, 7, and 7 post release failures, respectively (post 
release failures are sparse for the Shuttle). To make fault 
correction predictions comparable across OIs, 7 failures 
were used for each OI (the first seven for OID). All data 
and predictions are in terms of 30-day intervals. This is 
the failure count interval used in previous Shuttle 
reliability predictions [8]. Although 7 failures may seem 
like a small sample size, it is representative of Shuttle post 
release reliability, and despite the small number of 
failures, the model is able to predict detected number of 
failures D (T) fairly accurately (see Tables 1, 2, and 3). 
  

For the purpose of validation, we ran three scenarios 
– one each for OID, OIJ, and OIO – shown in Tables 1, 2, 
and 3, respectively. This involved determining from the 
collected data when failures occurred and when faults 
were corrected. The actual delay between failure 
occurrence and fault correction was estimated by 
examining, manually, the Shuttle Discrepancy Reports 
(i.e., reports that document deviations between specified 
and observed software behavior) to determine the 
disposition of the fault (i.e., the release and release date 
on which the fault was corrected).  

 
The event column of the tables shows when either a 

failure occurred or a fault was corrected. In some cases 
multiple failures or corrected faults occurred in the same 
interval; these occurrences are signified by the plural form 
in the event column. The next column shows the test time 
T when the events occurred followed by the actual values 
of cumulative number of failures detected D (T), 
cumulative number of faults corrected C (T), and number 
of remaining faults N (T), the difference between D (T) 
and C (T). The next section of the tables shows the 
predictions for D (T), C (T), and N (T). Notice at the top 
of each table the statement about the range of prediction, 
which is for T > s-1 (see section 2.2). For example, for 



OID in Table 1, s = 7; therefore, the predictions start at 
interval T = 7.43.  

 

 
 

Table 1: OID (Predictions for T > s-1 = 6) 
  Actual Values Predictions Squared Error 

Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T) 
Failure 4.53 1 0 1       
Failure 4.83 2 0 2       
Failure 5.70 3 0 3       
Failure 7.43 4 0 4 3.53 0.30 3.23 0.220 0.09 0.59 
Failure 9.77 5 0 5 4.37 1.15 3.22 0.401 1.31 3.17 
Corrections 10.86 5 4 1 4.74 4.53 0.22 0.066 0.28 0.62 
Correction 10.87 5 5 0 4.75 4.53 0.22 0.065 0.22 0.05 
Failure 12.73 6 5 1 5.37 5.16 0.21 0.401 0.03 0.63 
Correction 14.60 6 6 0 5.97 5.77 0.20 0.001 0.05 0.04 
Failure 17.50 7 6 1 6.85 6.67 0.19 0.022 0.44 0.66 
Correction 18.17 7 7 0 7.05 6.87 0.18 0.002 0.02 0.03 
    Mean Square Error 0.147 0.31 0.72 
 

Table 2: OIJ (Predictions for T > s-1 = 8) 
  Actual Values Predictions Squared Error 

Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T) 
Failure 3.57 1 0 1       
Failure 7.03 2 0 2       
Failure 7.47 3 0 3       
Failure 9.17 4 0 4 3.60 0.28 3.32 0.16 0.08 0.46 
Failure 9.23 5 0 5 3.63 0.32 3.32 1.87 0.10 2.83 
Corrections 10.60 5 2 3 4.28 2.99 1.29 0.51 0.99 2.92 
Failure 13.20 6 2 4 5.38 4.13 1.25 0.38 4.54 7.57 
Correction 13.66 6 3 3 5.56 5.32 0.24 0.20 5.36 7.61 
Failure 17.17 7 3 4 6.75 6.56 0.20 0.06 12.65 14.47 
Correction 24.06 7 4 3 8.47 8.34 0.13 2.16 18.86 8.25 
Correction 24.27 7 5 2 8.51 8.39 0.13 2.29 11.47 3.51 
Correction 37.43 7 6 1 10.31 10.25 0.06 10.92 18.05 0.89 
Correction 37.44 7 7 0 10.31 10.25 0.06 10.93 10.56 0.00 
    Mean Square Error 2.95 8.27 4.85 
 
 

Table 3: OIO (Predictions for T > s-1 = 8) 
  Actual Values Predictions Squared Error 

Event T D(T) C(T) N(T) D(T) C(T) N(T) D(T) C(T) N(T) 
Failure 5.77 1 0 1       
Failure 5.90 2 0 2       
Failure 7.53 3 0 3       
Correction 9.07 3 1 2 3.20 1.06 2.14 0.04 0.00 0.02 
Failures 11.47 5 1 4 3.62 1.49 2.13 1.90 0.24 3.50 
Corrections 16.80 5 4 1 4.49 3.37 1.11 0.26 0.39 0.01 
Failure 24.67 6 4 2 5.60 4.50 1.10 0.16 0.25 0.82 
Corrections 29.40 6 6 0 6.18 6.09 0.09 0.03 0.01 0.01 
Failure 36.17 7 6 1 6.92 6.84 0.08 0.01 0.71 0.86 
Correction 45.77 7 7 0 7.79 7.73 0.06 0.63 0.54 0.00 
    Mean Square Error 0.43 0.31 0.75 
 



The last section of the tables shows the squares of the 
differences between actual and predicted values for 
computing the Mean Square Error (MSE) at the bottom of 
the tables. We consider the MSE values for OID and OIO, 
Tables 1 and 3, respectively, to be sufficiently low to 
validate the predictions. However, we do not reach that 
conclusion regarding OIJ in Table 2. The discrepancy 
between predicted and actual results is due primarily to 
the long delay between failure detection and the start of 
fault correction that occurs because the failures were 
classified as non-critical on the current release and were 
not considered critical for one to three releases in the 
future. In contrast,  “our model is based on keeping the 
software updated with corrections in the current release” 
(see section 2.1). For the same reason, we were unable to 
validate inequality (13), the maximum fault correction 
delay (see section 3.1).  This is a lesson learned from the 
research that we will further address in section 5.  
 
5. Summary and Conclusions 
 It is imperative to include fault correction in 
reliability modeling and prediction because without it, 
predictions will understate the reliability of the software. 
We have developed a number of equations for assessing 
the improvement in reliability resulting from fault 
correction. In addition, we have shown examples of how 
they apply to stopping rules for testing and prioritization 
of tests and test resources. We showed that the number of 
remaining faults is better than the fault correction rate for 
assessing reliability and prioritizing tests because the 
former can be used with a reliability threshold to predict 
how much testing would be required to meet the 
reliability goal.   
  

We found that the most important factor in  fault 
correction modeling is the delay between failure detection 
and fault correction. We modeled this factor, using the 
concept of a fault correction queuing service with 
exponentially distributed delay – a highly statistically 
significant empirical result based on Shuttle data.  

 
We obtained good validation results for two of the 

three OIs evaluated. The third OI served as a lesson 
learned that we will apply to future work on the NASA 
GSFC software projects. We will investigate whether 
fault corrections are postponed and, if so, whether we can 
model this delay. This will be a challenge because, 
whereas failure detection is a machine process, fault 
correction is part human process (deciding when to 
implement a correction and analyzing how to make the 
correction) and part machine process (verifying the 
correction on a computer).  
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